Rodríguez-Clare et al. (2020): Simplified Model Solution and Exposition of Extension

Presented by

William Bennett, Jordan Holbrook, Yang Pei, William Sevier

University of Houston

December 2021

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回日 のへで

Simple Model Setup Simple Model Results Simple Model Results Simple Model Results Motivation of Extension Question and Proposal **RUV** Model **BHPS** Model Conclusion

BHPS • ECON-7395 • December 2021 • (0/15)

◆□▶ ◆□▶ ◆目▶ ◆日▶ 目目 のへで

•

December 2021

(1/15)

Setup:

- ► 4 Regions
 - ▶ 2 US, 1 C, 1 ROW
- \blacktriangleright 3 Sectors
 - ► (A)griculture, (M)anufacturing, (S)ervices
 - ▶ 1 Broad sector
 - $\blacktriangleright \implies$ one wage per region
 - ▶ No home production
 - $\blacktriangleright \implies 100\% \text{ LFP}$
- ▶ 4 time periods
 - ▶ Period 0 just initial W, L conditions
 - \blacktriangleright 1, 2, 3 "real" periods

BHPS • ECON-7395

Simple Model Setup

・ロト < 団ト < 三ト < 三ト < 三ト < ロト

1

Parameters:

$$\begin{split} \delta &= 0.984 \\ \gamma &= 1 \\ \kappa &= 5.9 \\ \eta &= \infty \\ \bar{L}_i &= 1 \quad \forall i \\ \sigma_s &= 1 \quad \forall s \end{split} \qquad \begin{aligned} \alpha_{j,s} &= \frac{1}{3} \quad \forall j, \forall s \\ \phi_{j,k} &= \frac{1}{3} \quad \forall j, \forall k \\ \phi_{j,sk} &= \frac{2}{9} \quad \forall j, \forall s, \forall k \\ \tau_{ij,k,t} &= 1 \quad \forall i, \forall j, \forall k, \forall t \\ D_{j,t} &= 0 \quad \forall j, \forall t \\ \beta &= 0.95 \end{split}$$

BHPS • ECON-7395 • December 2021 • (2/15)

・ロト < 団ト < 三ト < 三ト < 三ト < ロト

China Shock:

TFP table:

$k \setminus i$	US1	US2	CHN	ROW
A	2	2	1	1
Μ	4	4	Х	1
S	8	8	1	1

$$X = \begin{cases} 1 & \text{if } t = 1\\ 1.2 & \text{if } t = 2\\ 5 & \text{if } t = 3 \end{cases}$$

BHPS • ECON-7395 • December 2021 • (3/15)

Period 1:

► No shock

▶ Initial state of the world

vars $\setminus i$	US1	US2	CHN	ROW
W_{free}	0.3641	0.3641	0.1359	0.1359
W	0.3641	0.3641	0.1359	0.1359
P	8.3970	8.3970	8.3970	8.3970
W/P	0.0434	0.0434	0.0162	0.0162
L	1	1	1	1
l	1	1	1	1
u(%)	0	0	0	0

BHPS • ECON-7395 •

December 2021

•

・ロト < 団ト < 三ト < 三ト < 三ト < ロト

(4/15)

Period 2:

► Small shock

▶ DNWR doesn't bind

vars $\setminus i$	US1	US2	CHN	ROW
W_{free}	0.3617	0.3617	0.1414	0.1351
W	0.3617	0.3617	0.1414	0.1351
P	8.4236	8.4236	8.4236	8.4236
W/P	0.0429	0.0429	0.0168	0.0160
L	1	1	1	1
l	1	1	1	1
u(%)	0	0	0	0

BHPS • ECON-7395 •

I

December 2021

(5/15)

٠

Period 2:

► Large shock

► DNWR binds

$vars \setminus i$	US1	US2	CHN	ROW
W_{free}	0.3330	0.3330	0.2084	0.1256
W	0.3497	0.3497	0.2084	0.1256
P	8.8158	8.8158	8.8158	8.8158
W/P	0.0397	0.0397	0.0236	0.0142
L	0.9523	0.9523	1	1
l	1	1	1	1
u(%)	4.77	4.77	0	0

BHPS ECON-7395 .

.

December 2021

・ロト < 団ト < 三ト < 三ト < 三ト < ロト

•

(6/15)

Autor, Dorn, and Hanson (2013) (ADH):

For regions within US, facing negative Term of Trade shocks (from China) lead to decline in real wage and increase in unemployment and nonemployment.

The previous trade model can not capture those mechanisms well (Costinot et.al, 2014).

Rodríguez-Clare, Ulate, and Vasquez (2020) (RUV):

Built a model with downward nominal wage rigidity that explains these facts, and used it to analyze welfare effects of the "China shock".

But their model uses the nonstandard monetary mechanism of a nominal anchor.

Research Question: Can the nominal anchor be replaced with a more standard Taylor rule mechanism? :

- ▶ Introduce ability to save.
- ▶ Saving depends on future interest rates.
- ▶ Interest rates set by monetary authority(ies).
- ▶ Eliminate need for nominal anchor.

BHPS • ECON-7395 • December 2021 • (8/15)

Labor and Utility in RUV:

▶ Before, utility function (non-home production) involved log of expected real wage:

$$U_{i,b,t} = \ln(\omega_{i,b,t}) + z_b$$

Expected real wage is real wage times the probability of being employed:

$$\omega_{i,b,t} = \frac{W_{i,b,t}L_{i,b,t}}{P_{i,t}l_{i,b,t}}$$

- ▶ Utility from (expected) real wage because it represents consumption per capita
- ► z_b distribution gives labor force participation rate, $\pi_{i,t}$, sectoral share of employment in sector b, $\pi_{i,b,t}$, aggregated expected real wage, $\omega_{i,t}$ and welfare function, $u_{i,t}$:

$$\pi_{i,t} = \frac{\omega_{i,t}^{\kappa}}{\mu_{i}^{\kappa} + \omega_{i,t}^{\kappa}} \quad \pi_{i,b,t} = \frac{\omega_{i,b,t}^{\eta}}{\omega_{i,t}^{\eta}} \quad \omega_{i,t} \equiv \left(\sum_{b=1}^{B} \omega_{i,b,t}^{\eta}\right)^{1/\eta} \quad u_{i,t} \propto (\mu_{i}^{\kappa} + \omega_{i,t}^{\kappa})^{1/\kappa}$$

BHPS • ECON-7395 • December 2021 • (9/15)

New Labor and Utility:

- ▶ Need utility to come explicitly from consumption, not wages
- ▶ No clear way to do this
- \triangleright $C_{i,b,t}$ never mentioned in paper

$$C_{i,b,t} \equiv \frac{W_{i,b,t}L_{i,b,t}}{P_{i,t}} = \frac{\omega_{i,b,t}}{l_{i,b,t}} = C_{i,k,t}, \forall k \in b$$

▶ Replace $\omega_{i,t}$ and thus utility:

$$\omega_{i,t} = \left(\sum_{b=1}^{B} (C_{i,b,t} l_{i,b,t})^{\eta}\right)^{1/\eta} \quad u_{i,t} \propto \left(\mu_{i}^{\kappa} + \left(\left(\sum_{b=1}^{B} (C_{i,b,t} l_{i,b,t})^{\eta}\right)^{1/\eta}\right)^{\kappa}\right)^{1/\kappa}$$

▶ Budget constraint:

BHPS

BHPS Model

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Objective Function and Budget Constraint:

► Objective function:

$$U_i = \sum_{t=0}^{\infty} \beta_i^t u_{i,t}(\{C_{i,b,t}\}_{b=1}^B)$$

► Where

$$u_{i,t} = \left(\mu_i^{\kappa} + \left(\left(\sum_{b=1}^B (C_{i,b,t}l_{i,b,t})^{\eta}\right)^{1/\eta}\right)^{\kappa}\right)^{1/\kappa}$$

▶ Now have constraint include saving:

$$P_{i,t} \sum_{b=1}^{B} C_{i,b,t} + a_{i,t+1} = \sum_{b=1}^{B} W_{i,b,t} L_{i,b,t} + (1+i_{i,t-1})a_{i,t}$$

BHPS • ECON-7395 • December 2021 • (11/15)

Budget Constraint Discussion:

► Repeat:

$$P_{i,t} \sum_{b=1}^{B} C_{i,b,t} + a_{i,t+1} = \sum_{b=1}^{B} W_{i,b,t} L_{i,b,t} + (1 + i_{i,t-1})a_{i,t}$$

 \blacktriangleright a could be capital, assets, bonds, etc. (would change equilibrium condition)

- ▶ In this setup, a just inter-temporal transfer from region i to i
- ► Could enrich this to multiple *a*'s:
 - Save in different regions and/or sectors at different interest rates
 - ▶ w/ or w/o frictions

BHPS • ECON-7395 • December 2021 • (12/15)

Euler equation:

FOC's of the Lagrangian:
C_{i,b,t}
β^t_i ∂u_{i,t}/∂C_{i,b,t} + λ_{i,t}P_{i,t} = 0
a_{i,t+1}
λ_{i,t} - λ_{i,t+1}(1 + i_{i,t}) = 0
EE
∂u_{i,t}/∂C_{i,b,t} = β_i P_{i,t}/P_{i,t+1}(1 + i_{i,t}) ∂u_{i,t+1}/∂C_{i,b,t+1}
EE replaces RUV's nominal anchor

BHPS • ECON-7395 • December 2021 • (13/15)

BHPS Model

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Taylor Rule:

► ZLB Taylor Rule:

$$i_{i,t} = \max\left(0, \frac{1-\beta_i}{\beta_i} + \pi_i^* + \phi_{\pi,i}(\pi_{i,t} - \pi_i^*) + \phi_{u,i}(u_{i,t} - \bar{u}_i)\right)$$

▶ Where inflation is

$$\pi_{i,t} = \frac{P_{i,t} - P_{i,t-1}}{P_{i,t-1}}$$

▶ With the monetary authority's target given by π^* , and unemployment is

$$u_{i,t} = 1 - \frac{\sum_{b=1}^{B} L_{i,b,t}}{\sum_{b=1}^{B} l_{i,b,t}}$$

- ▶ Where the flexible price unemployment rate $\bar{u}_i = 0$
 - ▶ Easy to use output gap instead

BHPS • ECON-7395 • December 2021 • (14/15)

◆□▶ ◆□▶ ◆目▶ ◆日▶ 目目 のへで

Value Added:

- ▶ Replaced nominal anchor with EE and Taylor Rule
- ▶ Introduced forward looking agents
- ▶ Generalizes nicely
 - Bonds, assets, capital
 - Different types for different regions/sectors
- ▶ Stochasticity seems doable

BHPS • ECON-7395 • December 2021 • (15/15)

Thank You!

BHPS • ECON-7395 • December 2021 • (15/15)